
THE DESIGN OF THE PERSPECTIVE TEXTURE MAPPING FOR 3D
COMPUTER GRAPHICS IN RASTERIZER MERGED FRAME BUFFER

TECHNOLOGY
Seung-Gi Lee*, Woo-Chan Park*, Won-Jong Lee*, Woo-Nam Jung* and Tack-Don Han*

*Dept. of Computer Science, Yonsei University, Seoul 120-749,Korea
*E-mail: {sklee, chan, airtight, wnjung, hantack}@kurene.yonsei.ac.kr

Abstract
Recently, more advanced image quality and many

techniques are needed in 3D computer graphics. Especially
texture mapping support is the major issue in the design of
high performance 3D graphics system. In this paper, a high-
performance 3D graphics hardware is designed in the point
of texture mapping. Proposed system is composed of a single-
chip of rasterizer and frame buffer using processor-memory
integration method, which is adapted for process of the high-
performance 3D graphics. Also, texture mapping unit is
designed using the processor-memory integration technology
to provide sufficient bandwidth. Therefore, the tremendous
memory bandwidth and the long latency required for texture
mapping can be reduced by this approach.

I. INTRODUCTION

A remarkable advance in 3D computer graphics industry
has been progressed for last ten years. High performance
graphics accelerators make it possible to process real-time
images of high quality not to be compared with last ones.
Recently, Many researchers studied various methods for
removing aliasing and mapping techniques, i.e., texture
mapping, bump mapping, and environment mapping for
realistic scene and this trend is accelerated in these days [1].

To support realistic 3D computer graphics image, the
texture mapping is a major issue in the design of 3D graphics
hardware. But, the tremendous memory access and the long
latency are required to support a texture-mapped image.
While, processor-memory integration technology was adapted
in the high performance 3D graphics system [9], [14], [15].
This approach is the most promising candidate for high
performance 3D graphics system. Then the main focus of
these systems is to reduce memory bandwidth between the
frame buffer and the rasterizer, but texture mapping is not
considered.

In this paper, the structure of a rasterizer integrated with a
frame buffer is designed using the processor-memory
integration technology. And texture mapping unit is designed
using the processor-memory integration technology to provide
sufficient bandwidth, as similar to [10]. The proposed system
presents the exact method for the perspective projection
texture mapping. By using perspective projection method, the
distortion invoked by linearly interpolating 2D texture data
can be eliminated.

This paper is organized as follows. As a background,
Section 2 describes the rasterization process, Section 3
describes the texture mapping overall, and Section 4 discusses
the interpolation technique for perspective texture mapping
and the problem invoked by transforming from 3D object
space into 2D screen space and the rendering algorithm are
analyzed. Section 5 provides proposed 3D rendering system

and describes the differences with previous one. Section 6
summarizes the conclusions and outlines areas for future
research.

II. RASTERIZING PROCESS

Rasterizing need quite processing. Because interpolation is
needed to compute color, texture and transparency before
final image dispatch to frame buffer. One triangle is defined
three vertices),,(zyx and color values of each vertex
RGB�. Before scan conversion processing, the increase of
triangle of edge walk and span interpolation must be
computed.

In the way of calculating the rate of increase, triangular
slope, parameters of gradient, coordinate division for
perspective texture and etc. must be processed division
against several parameters. In this stage, at least 5 number of
lookup tables are needed for possible processing of prefect
pipeline [12]. Using the reciprocal table with guard bit is
practical way that is reduced latency and size of rasterizer
[13]. And the rate of increase, that is the color, depth and
texture coordinate value of triangle, is computed by the same
reciprocal values.

)()()()(
)()()()(

12131312

12131312

yyxxyyxx
yyzzyyzz

x
z

−⋅−−−⋅−
−⋅−−−⋅−=

∂
∂

)()()()(
)()()()(

12131312

13121213

yyxxyyxx
xxzzxxzz

y
z

−⋅−−−⋅−
−⋅−−−⋅−=

∂
∂

So, reference of previously computed value is reduced
overhead which can be occurred in calculating the rate of
increase.�

��

�

III. TEXTURE MAPPING

When image are mapped in object, colors of the each pixel
of object are mapped by correspond color of image. In general,
color, which is mapped by image, is needed to conceptually
several stages [3]. Sequential images must be reconstructed
first, because of image are stored in sampled array. Then next,
displayed image must be twisted or bent for properly wrapped
with some kind of projective distorted object. (Perhaps, this is
occurred presentation of perspective distortion.) Distorted
mage is removed high frequency component by filtering. In
resampling stage, aliasing are occurred, because of high
frequency component. Pixel what are processed texture, are
obtained proper color by resampling stage.

Practically, above filtering stage are approximately
performed by one of the several ways. Mip-mapping is the
most popular method [6]. There are many normalized
techniques of above basic texture mapping. It is no need to
construct 2-dimensional map. Sampling and filtering can be
applied with 1-dimensional or 3-dimensional image [8].

Texture image are applied to polygon that is assigned
texture coordinate to polygon vertex. This texture coordinate
index texture image, and are interpolated each pixel of
polygon. In present many graphic system, texture mapping are
supported by hardware. In the most case, the time required to
make scene with texture mapping is less than without texture
mapping. Texture mapping method, which are not confined to
texture, can be used interesting application graphic drawing
method, with air-brush, volume rendering, Phong shading and
environment mapping [7].

IV. LINEAR INTERPOLATION FOR
PERSPECTIVE PROJECTION MAPPING
1. Affine and Projective Mapping
Two kinds of mapping, what are affine and projective, are

used in the 3D graphics. Normal feature of projective
mapping from),(vu to),(yx of 2D is:

ihvgu
fevduy

ihvgu
cbvaux

++
++=

++
++= ,

These are more simply expressed by homogeneous matrix
notation.

















=
ifc
heb
gda

qvquqwywxw)()(

There are scale, rotation, translation and shear in the affine
mapping. A 2-D projective mapping is affine if 0== hg
and 0≠i .

2. Polygon Rendering with Linear Interpolation
Linear interpolation algorithm is [4]:
� Associate a record containing the parameters of interest

with each vertex of the polygon.
� For each vertex, transform object screen coordinate to

homogeneous screen space ()wzwywxw ,,, using 4�4
object to screen matrix.

� Clip the polygon against plane equation each of the six
sides of the viewing frustum (view volume), linearly
interpolating all the parameters when vertices are created.
� Perform a homogeneous division to compute

wzwzwywywwxx === ,, .

� Scan convert in screen space, by linear interpolation of
all parameters, using the parameter values at each pixel for
shading.

The step � to � from this algorithm are processed in

geometry computation stage, and the last step is processed in
rasterization stage. By the way, for object space coordinate
are normalized to screen coordinate system, in this algorithm,
homogeneous coordinate are simply performed by divided by
scale factor. These invoke the problem in the processing of
screen coordinate like texture mapping.

3. Flaws of Interpolation
Linear interpolation is usually used Gouraud shading, Pong

shading and texture mapping as well. It is wrong, however, to
perform linear interpolation in screen space of parameter,

which associated with object space. Form object space to
screen space, are performed perspective projection mapping.
So above linear interpolation algorithm are only applied
mapping by parallel projection or viewing direction, and
linear transformation, which screen coordinate space is
mapping with. Demerit of linear interpolation is especially
appeared with texture mapping. Texture mapping with linear
interpolation can be presented perspective scene. Texture is
also appeared discontinuity along the horizontal line across
the vertex. And, the polygon with several plane are occurred
rubber sheet effect and rotational variation. Linear
interpolation is only correctly applied, when that is rotational
invariation with affine mapping. To make 3D scene, basically
use perspective projection method, so linear interpolation is
not proper form screen space to object space. Triangulation
method is often used, as solution of this problem. There is
polygon subdivision, which is the method of linear
interpolation in object space parameter of new vertices. A
polygon is partitioned in several small polygon then
approximation at polygon. This is reduced fast pixel
processing rate by increased polygon.

Fig. 1. Interrelationship of the coordinate system required
for standard texture mapping.

4. Rational Linear Interpolation
Rational linear interpolation is proposed to solve above

problem [5]. Fig. 1. presents interrelationship of the
coordinate system required for standard texture mapping.
Object-affine space is mean object space and possible space
with affine mapping through translation. Screen-affine space
is mean screen space and possible space with affine mapping
through translation. Object space and screen space are
translated with perspective projection mapping.

If parameters are affine with object space and 1=w ,
homogeneous screen coordinate are computed by translate
object space coordinate point, homogeneous parameter vector
()nrrr ,,, 21 l is affine with screen space. Therefore
this vector is interpolated by linear interpolation in screen
space [Fig. 1].

In this point, proposed methods are added to interpolation
parameter list with other parameter without geometry
translation processing stage. For computing as many as n
parameter, each vertex is divided by 1+n times and
interpolated 1+n parameters. For computing each
parameter, n homogeneous parameters is divided by

interpolated
w
1 per each pixel.

CByAx
cybxa

yxw
yxwyxryxr iiii

i ++
++

==
),(1

),(),(
),(

In most arithmetic processor, fast division method are
multiply n times with a reciprocal of multiplier. If the value
w is the same with every vertex, parameters are screen-
affine against polygon. So, each pixel is avoided division
processing.

5. Rendering Algorithm with Rational Linear

Interpolation
The following algorithm is rational linear interpolation [12].
� Associate a record containing the n parameters of

interest ()nrrr ,,, 21 h with each vertex of the
polygon.

� For each vertex, transform object space coordinates to
homogeneous screen space using 4�4 object to screen matrix,
yielding the values ()wzwywxw ,,, .

� Clip the polygon against plane equations for each of the
six sides of the viewing frustum, linearly interpolating all the
parameters when new vertices are created.
� At each vertex, divide the homogeneous screen

coordinates, the parameters ir , and the number
w
1 to

construct the variable list
()wwrwrwrzyx n 1,,,,,,, 21 l .

� Scan convert in screen space by linear interpolation of

all parameters, at each pixel computing
w
wri

1
 for each of

the n parameters; use these values for shading.

In these algorithm, step ��� are as same as linear

interpolation algorithm. The other two stage however,
compute perspective division for perform polygon to
perspective projection.

V. RENDERING SYSTEM

Fig. 2. System Model

Fig. 2 is the system model that proposed by [9], which is

basically supposed to be system model in this paper. Contrary
to conventional system, this model separates geometry
processing unit from CPU completely and put it into separate
graphic chip, which makes CPU be free from conventional

geometry processing load. Besides, this model composed
rasterizing unit and frame buffer unit as single chip form, and
includes separate texture mapping unit for texture mapping
that process abundant texture data.

There are several problems in system model that proposed
by [9]. The amount of transmission data between rasterizer-
framebuffer units is much larger than the one of system model
that locates polygon processing unit before rasterizing unit,
since polygon processing unit exists in geometry processing
unit. And the other problem is that this model composes
texture/bump mapping address generation logic per edge
processor for reducing the hardware size, but it causes span
process time delay about four times when texture mapping is
running. Besides it didn't consider any distortion that is
caused by perspective projection mapping.

Fig. 3. Rasterizing Flow Chart

Setup stage for polygon processing is moved from geometry

processing unit to the front part of rasterizing unit in the
proposed model in this paper [12], which is able to solve the
bandwidth problem between geometry-rasterizer unit. Besides,
it executes perspective division in the span processing stage
for resolving distortion problem. Perspective division unit is
composed of reciprocal lookup table for obtaining value of

w
1 and multiplier to multiply this value to each parameter.

Differently from the system is proposed by [9], the datapath
for texture data address generation and the datapath for scan
conversion is not separated and overlapped for more efficient
structure and process [Fig. 3].

Fig. 4. Proposed Rasterizer-Frame Buffer Structure

Fig. 4 shows the rasterizer-frame buffer structure is

proposed in this paper. Proposed structure is composed of one
polygon processing unit and four edge processing units, and
frame buffer memory is interleaved to the form of 16 memory
banks, each bank has one span processing unit and
antialiasing/pixel update unit. And perspective division unit in
the span processing unit is able to improve image quality.

Fig. 5. Texture Mapping Unit

Abundant texture memory is required for efficient texture

mapping. Off-chip memory with low bandwidth for texture
memory causes access delay and becomes a large obstacle to
3D graphic processing. For resolving this problem, texture
mapping logic and texture memory is composed in single chip
by processor-memory integration technology [Fig. 5].

This unit is composed of address and control unit for decide
each level of detail, 16 bank typed texture memory for
trilinear mip-mapping, and trilinear interpolation unit for
texture data interpolation [10]. Two bilinear interpolation unit
and one linear interpolation unit is used for fast texture data
computation in the trilinear interpolation [11].

VI. CONCLUSIONS AND FUTURE WORKS
In this paper, the method of optimizing the rasterizing step

by overlapping the interpolation step of screen coordinates,
screen parameters, and texture coordinates, which is a
common part of scan conversion and the texture mapping, is
presented.

To solve the distortion problem invoked by handling
perspective-projected polygon, perspective division is
executed in span processing unit. Also, the bandwidth
problem between rasterizer and frame buffer is solved by
using processor-memory integration method, and the memory
latency and bandwidth problem is solved by separating texture
mapping unit, which requires a large amount of memory, from
a rasterizer into a single chip.

Currently, the implementation of the simulation
environment to verify the designed system is progressing.
High-performance rendering system that supports the detail
representation techniques of 3D objects, that is, the bump
mapping, the environment mapping, and further Phong
shading will be designed.

VII. ACKNOWLEDGMENTS

This work is supported by National Research Laboratory
Projects from Ministry of Science & Technology of Republic
of Korea.

 REFERENCES
[1] Frederick M. Weinhaus and Venkat Devarajan, "Texture

Mapping 3D Models of Real-World Scenes," ACM
Computing Surveys, Vol. 29, No. 4, pp. 325-365,
December 1997.

[2] Paul S. Heckbert, "Survey of Texture Mapping," IEEE
Computer Graphics and Applications, Vol. 6, No. 11, pp.
56-67, November 1986.

[3] Paul S. Heckbert, "Fundamentals of texture mapping and
image warping," M.sc.thesis, Dept. of EE and CS,
University of California, Berkeley, June 1989.

[4] Paul S. Heckbert, "Generic Convex Polygon Scan
Conversion and Clipping," Graphics Gems, Andrew
Glassner, ed., Academic Press, Boston, 1990.

[5] P. S. Heckbert and H. P. Moreton, "Interpolation for
Polygon Texture Mapping and Shading," State of the Art
in Computer Graphics: Visualization and Modeling,
Springer-Verlag, pp. 101-111, 1991.

[6] Lance Williams, "Pyramidal parametrics," Computer
Graphics (SIGGRAPH '83 Proceedings), Vol. 17, No. 3,
pp. 1-11, July 1983.

[7] Paul Haeberli, Mark Segal, "Texture Mapping as a
Fundamental Drawing Primitive," Proceedings of the 4th
Eurographics Workshop on Rendering, pp. 259-266,
June 1993, Paris, France.

[8] D. R. Peachey, "Solid texturing of complex surfaces,"
Computer Graphics (SIGGRAPH '85 Proceedings), Vol.
19, No. 3, pp. 279-286, July 1985.

[9] Chun-Ja Choi, Woo-Chan Park, Tack-Don Han, "High
Performance Rendering System using a Rasterizer
Merged Frame Buffer," Proceedings of The 26th KISS
Fall Conference (III), Vol. 26, No. 2, pp. 9-11. October
1999.

[10] Andreas Schilling, Günter Knittel, and Wolfgang Strasser,
"Texram: A Smart Memory for Texturing," IEEE
Computer Graphics and Applications, Vol. 16, No. 3, pp.
32-41, May 1996.

[11] Tzi-cker Chiueh, "Heresy: A Virtual Image-Space 3D
Rasterization Architecture," 1997
SIGGRAPH/Eurographics Workshop on Graphics
Hardware, pp. 69-77, 1997.

[12] Anders Kugler, "The Setup for Triangle Rasterization,"
11th Eurographics Workshop on Graphics Hardware, pp.
49-58, August 1996, Poitiers, France.

[13] D. DasSarma, D. Matula, "Measuring the Accuracy of
ROM Reciprocal Tables," IEEE Transactions on
Computers, Vol. 43, No. 8, pp. 932-940, August 1994.

[14] http://www-ee.kaist.ac.kr/~ssl/research/ramp/ramp.html
[15] Steven Molnar, John Eyles and John Poulton,

"PixelFlow: High-Speed Rendering Using Image
Composition," Computer Graphics (SIGGRAPH ’92
Proceedings), Vol. 26, No. 2, pp. 231-240, July 1992.

